

	
		Skip to content	

	

		

		
			
		

	
	

		
		
							GENeSIS

			
							Digital Social Research

					

		
	

		
	

	
	
		

	
		

			

		
		Posted on July 18, 2011July 25, 2011 by Richard Milton
Extracting Data from PDFs: Clean Air in Schools
	

	
	
		A lot of the maps I have created over the last few years have started out as tabular data in PDF documents. A recent BBC London report contained a dataset obtained from TfL of all the schools in London which are within 150 metres of a road carrying 10,000 vehicles a day or more. The report is a PDF with 21 pages, so editing this manually wasn’t an option and I decided that it was time to look into automatic extraction of tabular data from PDFs. What follows explains how I achieved this, but to start with, here is the final map of the data:

The data for the above map comes from a freedom of information request made to TfL requesting a list London schools near major roads. The request was made by the Clean Air in London group and lists all schools within 150 metres of roads carrying 10,000 vehicles a day or more. The report included a download link to the data, which is in the form of a 21 page PDF table containing the coordinates of the schools:

BBC London Article: http://www.bbc.co.uk/news/uk-england-london-13847843

Download Link to Data: http://downloads.bbc.co.uk/london/pdf/london_schools_air_quality.pdf

The reason that PDFs are hard to handle is that there is no hard structure to the information contained in the document. The PDF language is simply a markup for placing text on a page, and so only contains information about how and where to render characters. The full PDF 1.4 specification can be found at the following link:

http://partners.adobe.com/public/developer/en/pdf/PDFReference.pdf

Extracting the data from this file manually isn’t an option, so I had a look at a library called iTextSharp (http://sourceforge.net/projects/itextsharp/), which is a port of the Java iText library into C#. The Apache PDFBox (http://pdfbox.apache.org/) project also looked interesting, but I went with iTextSharp for the first experiment. As the original is in Java, so are all the examples, but it’s not hard to understand how to use it. Fairly quickly, I had the following code:

[csharp]

using System;

using System.Text;

using System.IO;

using iTextSharp.text;

using iTextSharp.text.pdf;

using iTextSharp.text.pdf.parser;

namespace PDFReader

{

 class Program

 {

 static void Main(string[] args)

 {

 ReadPdfFile("..\\..\\data\\london_schools_air_quality.pdf","london_schools_air_quality.csv");

 }

 public static void ReadPdfFile(string SrcFilename,string DestFilename)

 {

 using (StreamWriter writer = new StreamWriter(DestFilename,false,Encoding.UTF8))

 {

 PdfReader reader = new PdfReader(SrcFilename);

 for (int page = 1; page {

 ITextExtractionStrategy its = new iTextSharp.text.pdf.parser.SimpleTextExtractionStrategy();

 //ITextExtractionStrategy its = new CSVTextExtractionStrategy();

 string PageCSVText = PdfTextExtractor.GetTextFromPage(reader, page, its);

 System.Diagnostics.Debug.WriteLine(PageCSVText);

 writer.WriteLine(PageCSVText);

 }

 reader.Close();

 writer.Flush();

 writer.Close();

 }

 }

 }

}

[/csharp]

This is one of the iText examples to extract all the text from a PDF and write out a plain text document. The key to extracting the data from the PDF table in the schools air quality document is to write a new class implementing the ITextExtractionStrategy interface to extract the columns and write out lines of data in CSV format.

It should be obvious from the above code that the commented out line is where I have substituted the supplied text extraction strategy class for my own one which I modified to write CSV lines:

[csharp]

ITextExtractionStrategy its = new CSVTextExtractionStrategy();

[/csharp]

The CSVTextExtractionStrategy class is defined in a separate file and is part of my “PDFReader” namespace, not “iTextSharp.text.pdf.parser”.

[csharp]

using System;

using System.Text;

using iTextSharp.text;

using iTextSharp.text.pdf;

using iTextSharp.text.pdf.parser;

namespace PDFReader

{

 public class CSVTextExtractionStrategy : ITextExtractionStrategy

 {

 private Vector lastStart;

 private Vector lastEnd;

 private StringBuilder result = new StringBuilder(); //used to store the resulting string

 public CSVTextExtractionStrategy()

 {

 }

 public void BeginTextBlock()

 {

 }

 public void EndTextBlock()

 {

 }

 public String GetResultantText()

 {

 return result.ToString();

 }

 /**

 * Captures text using a simplified algorithm for inserting hard returns and spaces

 * @param renderInfo render info

 */

 public void RenderText(TextRenderInfo renderInfo)

 {

 bool firstRender = result.Length == 0;

 bool hardReturn = false;

 LineSegment segment = renderInfo.GetBaseline();

 Vector start = segment.GetStartPoint();

 Vector end = segment.GetEndPoint();

 if (!firstRender)

 {

 Vector x0 = start;

 Vector x1 = lastStart;

 Vector x2 = lastEnd;

 // see http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

 float dist = (x2.Subtract(x1)).Cross((x1.Subtract(x0))).LengthSquared / x2.Subtract(x1).LengthSquared;

 float sameLineThreshold = 1f; // we should probably base this on the current font metrics, but 1 pt seems to be sufficient for the time being

 if (dist > sameLineThreshold)

 hardReturn = true;

 // Note: Technically, we should check both the start and end positions, in case the angle of the text changed without any displacement

 // but this sort of thing probably doesn’t happen much in reality, so we’ll leave it alone for now

 }

 if (hardReturn)

 {

 //System.out.Println("<< Hard Return >>");

 result.Append(Environment.NewLine);

 }

 else if (!firstRender)

 {

 if (result[result.Length – 1] != ‘ ‘ && renderInfo.GetText().Length > 0 && renderInfo.GetText()[0] != ‘ ‘)

 { // we only insert a blank space if the trailing character of the previous string wasn’t a space, and the leading character of the current string isn’t a space

 float spacing = lastEnd.Subtract(start).Length;

 if (spacing > renderInfo.GetSingleSpaceWidth() / 2f)

 {

 result.Append(‘,’);

 //System.out.Println("Inserting implied space before ‘" + renderInfo.GetText() + "’");

 }

 }

 }

 else

 {

 //System.out.Println("Displaying first string of content ‘" + text + "’ :: x1 = " + x1);

 }

 //System.out.Println("[" + renderInfo.GetStartPoint() + "]->[" + renderInfo.GetEndPoint() + "] " + renderInfo.GetText());

 //strings can be rendered in contiguous bits, so check last character for " and remove it if we need

 //to stick two rendered strings together to form one string in the output

 if ((!firstRender)&&(result[result.Length – 1] == ‘\"’))

 {

 result.Remove(result.Length – 1, 1);

 result.Append(renderInfo.GetText() + "\"");

 }

 else

 {

 result.Append("\"" + renderInfo.GetText() + "\"");

 }

 lastStart = start;

 lastEnd = end;

 }

 public void RenderImage(ImageRenderInfo renderInfo)

 {

 }

 }

}

[/csharp]

As you can probably see, this file is based on “iTextSharp.text.pdf.parser.SimpleTextExtractionStrategy”, but inserts commas between blocks of text that have gaps between them. It might seem like a better idea to parse the structure of the PDF document and write out blocks of text as they are discovered, but this doesn’t work. The London schools air quality example had numerous instances where text in one of the cells (e.g. a school name, Northing or Easting) was split across two text blocks in the pdf file. The only solution is to implement a PDF renderer and extract text using its positioning on the page to separate columns.

The result of running this program on the London schools air quality PDF is a nicely formatted CSV file which took about 5 minutes to edit into a format that I could make the map from. All I had to do was remove the page number and title lines from between the pages and add a header line to label the columns. There were also a couple of mistakes in the original PDF where the easting and northing had slipped a column.

	

	 CategoriesUncategorized, Visualisation

			
			2 Replies to “Extracting Data from PDFs: Clean Air in Schools”		

			
			
				
					
												Simon Birkett says:					

					
						July 21, 2011 at 6:32 pm					

									

				
					Richard

Great work.

One typo – it should be 10,000 not 100,000 in the third line of your introduction. Sorry didn’t know how else to contact you to say so.

FYI – The Green Party produced an interactive Google Earth map of the schools for Jenny Jones’s mayoral campaign. See: http://www.jennyforlondon.org/schools/

With best wishes.

Simon Birkett

Founder and Director

Clean Air in London

				

				 Reply
			
		
	
			
				
					
												Richard Milton says:					

					
						July 25, 2011 at 3:21 pm					

									

				
					Thanks for spotting the typo Simon, I’ve amended the post so it now says 10,000.

				

				 Reply
			
		

			
		Leave a Reply to Simon Birkett Cancel reply
Your email address will not be published. Required fields are marked *
Comment *
Name *

Email *

Website

Δ

	

	

	
		Post navigation

		Previous PostPrevious Two Line Elements
Next PostNext New MapTube Map Creation Feature

	
		
	

	

	Digital Social Research
			
Digital Social Research website

		
		
		Recent Posts

			
					Image Cutter 1.42 and Google Maps API v3
									
	
					Trackernet: Where are all the Tube Trains?
									
	
					FBX Exporters Part 4
									
	
					FBX Exporters Part 3
									
	
					FBX Exporters Part 2
									

		Tags
	3D Agents
	3DMax
	Add new tag
	GMapCreator
	Microsimulation
	NetLogo
	OpenLayers
	OpenStreetMap
	Web 2.0

 Digital Urban
	Tellus Mater: An AI That Thinks it’s Mother Earth
	How to Make a Lightsaber Realtime Wind Speed Gauge
	Reimaging the Traditional Weather House with Open Data, Laser Cutting and 3D Printing
	Writing 500 Words a Day – The Pomodoro Technique
	MQTT Scroller for the Pimoroni Stellar Unicorn: THE: Time, Headlines and Environmental Information
	Made by AI: The Making of Frame-IT
	Frame-IT
	Open Gauges – Physical and Digital Data Display Devices
	Incoming Metaverses: Digital Mirrors for Urban Planning
	Ubiquitous geographic information in the emergent Metaverse

 GIS and Agent-Based Modeling
	Crowdsourcing Dust Storms in the United States Utilizing Flickr
	Massive Trajectory Data Based on Patterns of Life
	Synthetic Geosocial Network Generation
	Geographically Synthetic Populations for ABM: A Gallery of Applications
	Evaluating the incentive for soil organic carbon sequestration from carinata production
	Leveraging newspapers to understand urban issues
	Spatial Data Science Symposium
	Call for Abstracts: Geosimulations for Addressing Societal Challenges
	Agent-Based Modeling of Consumer Choice
	ABM Online Courses

			

		Categories

				3DS Max

	Agents

	BBC

	Free GIS

	GMap Creator

	MapTube

	Mashup

	Uncategorized

	Visualisation

	Web 2.0

			Archives

				December 2011
	November 2011
	October 2011
	September 2011
	August 2011
	July 2011
	June 2011
	March 2011
	August 2010
	May 2010
	April 2010
	January 2010
	October 2009
	June 2009
	May 2009
	March 2009
	February 2009
	December 2008
	November 2008

			Blogroll

		Digital Urban
	GIS and Agent Based Modelling
	Wiki

		

		
			
				

		
		Proudly powered by WordPress	

			

		
	

